
Background 

Supernovae 8 occur somewhere in the observable Universe with a somewhat regular frequency; however, even 
with the technological sophistication of modern observatories we only catch a few per night. This is simply a 
matter of knowing where and when to look. The Large Synoptic Survey Telescope (LSST) [4] has a wide-field 
camera and an observing strategy that will result in this number exploding to thousands of candidate supernovae 
per night. The challenge is that we won't be able to follow up on all of those events, and so must make data-
driven decisions about which candidates to target. Further, our capacity as a community to make detailed follow-
up observations differ across facilities and locations. 


In order to collect the best possible data given limited knowledge, capability, and capacity, the Time-Domain 
Astronomy 6 group at Purdue University is developing a system that will take the incoming stream of alerts from 
multiple sources and feed them into a pipeline that builds a forecast of each supernova’s light curve to establish 
confidence in the nature of the event and the merit in collecting additional data. This is fed into a recommendation 
engine that combines metrics from these forecasts with knowledge of the participating observing agents (i.e., 
facilities and individual astronomers) to provide suggested targets in a way that maximizes the science objectives 
of the community as a whole. The data collected by each observer can then be re-incorporated into the pipeline 
and recommendation engine — active data collection.


Implementation 

The system is comprised of many elements, including a collection of agents that stream data through a distributed 
message broker that lets all other components subscribe to events, a database that houses all observational data 
collected from external sources in addition to a library of reference light-curves, a web-api that allows both 
internal and external systems to query for data and recommendations, and a daemon that automatically submits 
jobs (i.e., the pipeline) to one of Purdue’s high performance computing clusters on a regular schedule.


The pipeline component of the system is a batch job that gets submitted ahead of the anticipated stream of alerts 
for that evening. The job stands up a virtual cluster of engines (ipyparallel) and an in-memory object store (Plasma) 
on each unique host. All shared/reference data is pre-loaded into the store (e.g., a library of synthetic light curves). 
The driver application gets a client connection to the engines’ controller and awaits on a queue, dispatching 
incoming alerts as triggers. Each computing engine has access to the entire body of shared data via keys to its 
local Plasma store. 


Each engine has a client connection to the plasma store on its host and pre-acquires a proxy-reference to the 
shared data objects. Further, many of the events from previous nights have to be re-forecast so the observational 
data for those sources are pre-queried and loaded as well. In this way, conducting a single forecast takes 
considerably less time because all the necessary assets are already in memory.


What is LSST? 

The Large Synoptic Survey Telescope is a revolutionary facility which will produce an unprecedented wide-field 
astronomical survey of our universe using an 8.4-meter ground-based telescope. LSST leverages innovative 
technology in all subsystems: the camera (3200 megapixels, the world’s largest digital camera), telescope 
(simultaneous casting of the primary and tertiary mirrors; two aspherical optical surfaces on one substrate), and 
data management (30 terabytes of data nightly, nearly instant alerts issued for objects that change in position or 
brightness). This innovation on all fronts has attracted some prominent donors who are innovators in technology, 
institutional members, and hundreds of other scientists.”

Shared Memory High-Throughput Computing with Apache ArrowTM

As the barriers to entry in scientific computing have lowered with languages like Python and their libraries, the demand for ever more 
sophisticated and capable frameworks that provide almost turn-key functionality has grown commensurately (see keras 1).


For researchers who use the pilot job 2, many-task 3 design pattern for high-throughput computing 4 on modern systems, the Apache 
Arrow project [1], with its now included Plasma in-memory object store provides a high-level interface for sharing data structures between
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#!/bin/sh 
#BATCH: -N JobScript

# prologue 
# - configure environment 
# - start services (e.g., resource monitor, logging)

$ ipcontroller ... 
$ mpiexec ipengine ... 

$ mpiexec -machinefile <(sort -u $NODEFILE) plasma_store -s /tmp/plasma.sock ...

$ mpiexec -machinefile <(sort -u $NODEFILE) load_data -s /tmp/plasma.sock

$ pipeline ...

processes in a way that requires no serialization or copying of that data.


This poster outlines a common scenario in research computing in which a constraint is induced by the way memory is managed. The direct 
sharing of memory by a common middle data layer allows for simplified workflows that can operate at a more rapid cadence. A real-world 
example is provided; the goal is to raise awareness in facilitators who work with users to architect similar such high-throughput data 
pipelines.


The graphic in the middle of the poster showcases an anatomical diagram of a job script one might submit to a batch computing cluster 
which makes use of a hybrid design pattern — distributed task execution with locally shared memory.
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There are multiple paradigms in research computing with differing requirements and limitations in terms of compute speed, memory, IOPS, etc. Traditionally, HPC has been defined by workloads involving 
large coupled tasks that require high-speed low-latency interconnects that allow an operation to be distributed across a cluster of homogeneous nodes. More common in recent years, the objective has 
diversified to include processing large volumes of data (either in size or in number), where the tasks are weakly coupled (if not entirely independent). In the many-task scenario, a common and effective 
design pattern is to submit one or more jobs to a cluster that iterate through a subset of the tasks — a pilot job.


This is not a new problem and tools exist for managing these workflows; e.g., Launcher [2], GNU Parallel [3]. There exists a subclass here; however, in which a potentially very large reference dataset is 
required for many or all of the individual tasks. This is problematic in a number of ways depending on the solution pursued by the user. (1) Attempt some form of out-of-core computing5 where each task 
pulls in partial data as it’s needed; or (2) the task execution is handled manually and each worker has its own copy of the reference data – holding it in memory between tasks. In the first case, a non-trivial 
amount of time is spent on data loading; in the second, there may not be enough memory for that level of duplication. In either case, we are spending time and resources not on the task, but the 
prerequisites.


Further, an exotic variant of the previously described workflow arises when these data analysis tasks come in batches where completing the tasks soon after arrival matters. In these cases, a form of job 
preemption or ahead-of-time scheduling would allow for a job to start before the data arrives and begin initial setup. In the case of a large reference dataset, being able to load that into memory ahead of 
time and access it with a comparatively no-overhead proxy reference offers a wholly new capability. 

Footnotes 
1 Keras is a high-level library for developing deep neural networks that abstracts away the complexities of the algorithms and 
linear algebra involved. It has lowered the barrier to entry for deep learning to the extent that even novice programmers can be 
productive almost immediately. [5]


2 A pilot job is a batch job submitted to a computing cluster in which the job script is not the task itself but merely acquires the 
resource. The job manages the task execution manually or with a tool such as GNU Parallel. The idea being that the individual 
tasks are short enough in duration that submitting them to the scheduler would be ineffectual both in the limit in allowed total jobs 
as well as the latency involved in the scheduling software.


3 Many-task computing (MTC) is a relatively new paradigm to be defined that bridges the gap between high-performance 
computing (HPC) and high-throughput computing (HTC). MTC is characterized by many small, weakly coupled (or entirely 
independent) tasks.


4 High-throughput computing (HTC) is a paradigm in which the emphasis and constraint is not necessarily the compute speed but 
the volume of tasks completed over a long period of time. In some cases it is characterized by the rate at which data is being 
processed (as opposed to FLOPS). It can be distinguished from high performance computing (HPC) by the required low-latency 
interconnects. HTC can be distributed across disparate systems and even administrative boundaries. 


5 Out-of-core computing is a design pattern where data is lazy-loaded at the last possible moment before an operation and then 
immediately offloaded. This is necessary in situations where there is not enough memory capacity for the full dataset and it must 
be decomposed into blocks that can be operated on iteratively.

Footnotes 
6 Time-Domain Astronomy (TDA) is a branch of astrophysics that focuses on sources which change over time (either transient or 
periodic). Supernovae are only one such example; other transient phenomena include Gamma-Ray Bursts, micro-lensing, and 
asteroids. 


7 A light-curve is a time-series representation of the brightness of an astrophysical source, often used to characterize supernovae. 
Different types of supernovae can be distinguished by the shape of their light-curve.


8 A Supernova (plural: supernovae) is the explosive “death” of certain types of stars. Supernovae can out-shine their host galaxy 
for the life of the event and are an active area of research in modern astrophysics. 


9 Astronomical Surveys stand in contrast to “traditional” observing behavior in that it is not typically an individual person or group 
interested in a particular astrophysical source; but rather, a dedicated (entirely or in part) facility that makes observations of the 
sky in a regular pattern – usually making both the raw data and finished data products available in an online archive.
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# epilogue 
# - shutdown controller, engine, and plasma stores 
# - gather data products 
# - archive everything 
# - stop services (e.g., resource monitor, logging)
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Figure D1 (above): An idealized example light curve demonstrating 
the general idea behind the forecasting. The gray shaded area 
represents the forecasted light-curve.
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Adorable birds courtesy of kurzgesagt.org. “In a Nutshell — Kurzgesagt”.


Arrow defines a standard format for efficiently representing data in-memory (see below). Feather represents that 
format manifest on disk; Arrow buffers as a file. If one were to create a memory-map to such a file it would allow 
for larger datasets to be processed out-of-core. Writing and accessing a file in this way via the /dev/shm shared-
memory file system on a Linux/BSD system lets other programs access the same data. Plasma is this concept 
formalized as part of the Arrow project. A dedicate program runs as a service (the “store"), and other programs can 
put/get data objects to/from the store. When a program accesses an object from the store it receives a proxy-
reference that can be treated as though it were a normal buffer.

What is Arrow? 

Apache Arrow is a cross-language development platform 
for in-memory data. It specifies a standardized language-
independent columnar memory format for flat and 
hierarchical data, organized for efficient analytic operations 
on modern hardware. It also provides computational 
libraries and zero-copy streaming messaging and 
interprocess communication. Languages currently 
supported include C, C++, C#, Go, Java, JavaScript, 
MATLAB, Python, R, Ruby, and Rust.” [5]
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Often, it is not merely the particular data which needs loaded by the 
engines, but some potentially large dataset common to all the tasks, 
e.g., a library of reference data. It is of course possible to pre-load 
the data on each engine and hold a global reference; however this 
would result in a duplication equal to the number of engines. Even 
with sizable memory per node the per-core memory is typically only 
a few Gigabytes.


Instead, loading a single copy or such reference data into a Plasma 
in-memory object store before scheduling tasks means each engine 
now effectively has the full volume of the system’s memory available 
to it at a near-zero overhead. 
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Figure A1 (above): Comparative diagram of the blocked-columnar data format defined by Apache Arrow. This 
format improves data locality relative to storing records in the traditional scheme.
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Figure D2 (left): Rendering of the Large Synoptic Survey Telescope (under construction).
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Figure B1 (above): Schematic diagram of the components that make up IPython Parallel.
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Figure C1 (above): An anatomical diagram of a batch job script including a distributed execution 
framework (ipyparallel) and localized memory sharing framework (plasma). In a nutshell, the 
engines are launched via MPI along with one Plasma store per host. Before scheduling tasks, 
preload the shared data assets in the same way the Plasma stores were launched. Choosing a 
consistent location, e.g., /tmp/plasma.sock, means that a particular engine is agnostic to which 
host it is running on and acquires its client connection via that same file path, regardless.

In many-task computing it is common practice to program the task as a self contained entity (i.e., a script or 
function) and then use some kind of separate framework to manage the execution of these tasks. The challenge 
with regard to memory usage is whether the execution engine can retain data structures between tasks. In the 
classic scenario an individual task is contained within a shell script and all the tasks are enumerated by a file 
which is processed some number at a time (à la GNU Parallel [3]).


IPython Parallel (ipyparallel) is a framework that allows Python functions to be mapped to remote engines (which 
are extensions of the IPython kernel used by Jupyter). Data is serialized before being sent to the engines. An 
effective strategy for scaling a workflow involving large volumes of data and/or hundreds to thousands of engines 
is to map not the data itself but the metadata specifying information about how to otherwise acquire said data 
(e.g., file paths instead of their contents). On a high performance computing cluster this can be quite robust given 
a distributed, networked file system — e.g., Lustre.

Figure C2 (right): Benchmarks for throughput in bytes sec-1 for each of out-of-core, 
plasma-store, and local-memory. The task was to compute the mean value of an array 
of numbers (float64) equal in size to the number of bytes indicated. This task was 
executed for each of 23, 24, …, 231 bytes for each of 1-24 concurrent workers for each 
of the three methods. The overlapping shaded curves show the ±1σ region over 100 
trials (local-memory, plasma-store) and 10 trials (out-of-core), respectively, for each 
worker (so 100 trials for a single worker but 2400 trials for 24 concurrent workers). 
The results for each of 1-24 concurrent workers are plotted independently (the 
overlaps). In the zoom-box we can see the steady growth region for each method. 
The numeric values indicate the end point of the central axis of the curve for that 
number of workers; i.e., many workers incurs some small proportional cost. 
Unsurprisingly, having datasets in-memory gives ~1 order of magnitude better 
efficiency. The computation itself should be consistent between access methods; the 
order of magnitude difference in the out-of-core method arising almost entirely from 
the cost of going to disk.* The difference between local-memory and plasma-store is 
then entirely as a result of memory access or some other related overhead in access 
management. 


The key takeaway is that near local-memory access speeds are possible without 
paying to penalty of duplication. 

* Carried out on Purdue’s Brown cluster using the Lustre file system.
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